第51卷第6期/2024年3月/中国激光

基于级联非对称 Y 分支的紧凑宽带高效的 LPu1-LPua 模式转换器

张豪,邓佳瑶,王梦柯,马小霞,陈开鑫。

电子科技大学光电科学与工程学院,四川 成都 611731

摘要 提出了一种基于级联非对称Y分支的紧凑、宽带、高效的LP0,-LP11。模式转换器。制作的聚合物波导模式转 换器具有 1.5 mm×14.0 μm 的紧凑尺寸,对于 C+L 波段的 x 偏振和 y 偏振光,其模式转换效率大于 98%, 串扰小于 -17.5 dB, 插入损耗低于 5.8 dB。所提出的模式转换器可以应用在宽带模分复用传输系统中。

关键词 光纤光学:光学器件;模式转换器:模分复用:聚合物波导;集成光学:非对称Y分支 DOI: 10.3788/CJL230832

中图分类号 TN256 文献标志码 A

1 引 言

模分复用(MDM)技术采用光纤或波导的多个正 交模式信道并行传输信息,这些正交的信道彼此具有 很低的模式串扰,为单模光纤光通信容量受限问题提 供了一个新的解决方案^[1-4]。MDM系统的核心器件为 模式转换器,模式转换器能够在复用/解复用时将基模 转换为高阶模,或者将高阶模转换为基模[34]。模式转 换器的主要实现平台可以分为三类,即空间光学元 件^[5-6]、全光纤^[7-8]和平面光路(PLC)^[9-28]。针对目前市 场对模式转换器的需求,基于PLC的模式转换器由于 具有尺寸紧凑、材料和结构多样、设计与制作灵活、集 成可兼容等特点而得到了极大的关注。已经报道的基 于PLC的模式转换器采用了多种结构,包括沟槽^[9]或 缝隙波导^[10]、非对称定向耦合器^[11-14]、多模干涉耦合 器^[15-16]、光栅辅助耦合器^[17]、布拉格光栅^[18]、长周期光 栅(LPG)^[19-21]、非对称Y分支^[22-26]、非对称Y分支与热 诱导LPG的结合^[27]、马赫-曾德尔干涉仪^[28-30]、介电超 表面[31]等。

众所周知,Y分支是一种非常简单且通用的光波 导器件,对称Y分支可以用作光功率分配器,而非对称 Y分支可以用作模式选择器。非对称Y分支具有制作 容差大、宽带的特点,聚合物波导具有低成本、制作工 艺简单的特点,因此基于聚合物平台的非对称Y分支 的模式转换器适用于 MDM 光通信系统中。文献[24] 报道了一种基于聚合物平台的非对称Y分支,可以实 现LPu和LPu。模式的转换,在1550 nm工作波长下模 式串扰为-22.2 dB, 10 dB带宽为40 nm,器件尺寸约 为15 mm×130 μm。文献[25]报道了一种可以同时 实现LPul-LPul和LPul-LPub模式转换的非对称Y分支 结构,该器件可以工作在C+L波段,模式串扰约为 -10 dB,器件尺寸约为1.5 mm×130.0 µm。文献[27] 报道了一种结合热诱导 LPG 和非对称 Y 分支的可重 构模式复用/解复用器,在C+L波段可以实现模式选 择度大于12 dB的LPul-LPul模式转换,该器件的长度 约为14 mm。尽管这些基于聚合物的模式转换器具有 良好的性能,但大的器件尺寸在一定程度上限制了其 在片上高密度集成光互联中的应用。

鉴于此,本文基于聚合物光波导平台,采用级联非 对称Y分支结构,设计、制作了一种紧凑、宽带、高效的 LPul-LPul模式转换器。我们制作的聚合物波导模式 转换器具有1.5 mm×14.0 µm的紧凑尺寸,并且对于 C+L 波段的 x 偏振和 y 偏振光,模式转换效率大于 98%, 串扰小于-17.5 dB, 插入损耗低于 5.8 dB。本 文提出的模式转换器也可以在其他高折射率差材料平 台上实现,例如绝缘体上铌酸锂、氮化硅和绝缘体上 硅,从而实现更紧凑和更先进的集成光子回路。

2 器件结构与设计

本文提出的模式转换器的三维示意图如图1(a) 所示,其由两个完全相同的非对称Y分支反向连接而 成。Y分支的主干部分是一个芯层宽度为wi的双模 直波导(stem A 和 stem B),该波段仅支持 E_{11}^{i} 和 E_{21}^{i} 模 式(i=x或y,代表模式的偏振方向),分别对应着光纤

通信作者: *chenkx@uestc.edu.cn

收稿日期: 2023-05-16; 修回日期: 2023-06-26; 录用日期: 2023-07-11; 网络首发日期: 2023-08-07

基金项目: 国家自然科学基金(62075027)、四川省重点研发计划(2020YFSY0003)、深圳市关键技术研发计划 (JSGG20210802154413040)

图1 所提出的LP₀₁-LP_{11a}模式转换器示意图。(a)模式转换器三维示意图;(b)主干波导的横截面图;(c)两个非对称Y分支连接处的 横截面图

Fig. 1 Schematics of proposed LP₀₁-LP_{11a} mode converter. (a) 3D schematic of mode converter; (b) cross-section view of stem waveguide; (c) cross-section view at joint of two asymmetric Y-junctions

中*i*偏振方向的LP₀₁模和LP_{11a}模。在Y分支的分叉 处,该双模波导逐渐分成两个具有不同宽度的单模余 弦S形弯曲波导。其中,宽臂S形弯曲波导(arm A和 arm D)的起始宽度为 w_2 ,末端宽度为 w_4 ,窄臂S形弯 曲波导(arm B和 arm C)的起始宽度为 w_3 ,末端宽度也 为 w_4 。两臂的最大间距(对应于两个非对称Y分支反 向连接处)为 w_5 ,两个主干波导的z向间距为L。主干 波导和两个非对称Y分支的连接处的横截面分别如 图 1(b)和图 1(c)所示。聚合物材料 EpoCore 和 EpoClad分别用作芯层和包层材料,它们在1538 nm 波长处的折射率分别为1.5716和1.5595,且均对偏振 不敏感。为了便于制作,所有波导芯层具有相同的高 度 h_0

所提出的模式转换器的模式演变和转换特性如 图 2 所示。该器件的工作原理是模式的绝热演变,即 一个模式可以通过非对称 Y 分支逐渐演变为另一个具 有与之最接近有效折射率的模式^[32-33]。如图 2(a)所 示,当耦合到 stem A 中的 LP₀₁模传输到分叉处时,基 于最佳匹配有效折射率法则,它将演变为 arm A 中的 LP₀₁模。随后, arm A 中的 LP₀₁模式逐渐演变为 arm C 中的 LP₀₁模式,并且在此演变过程中其有效折射率随 波导宽度的减小而减小,之后演变为 stem B 中的 LP_{11a} 模,实现了从 LP₀₁模到 LP_{11a}模的转换。当 LP_{11a}模耦合 到 stem A 中时,模式演变与上述情况相似,如图 2(b) 所示。

根据上述模式演化原理,为了实现两个模式之间 的最大模式转换效率,须优化波导参数,使得这两个模

图 2 模式转换过程示意图。(a)LP₀₁模转换为LP_{11a}模;(b)LP_{11a}模

Fig. 2 Schematic of modal conversion process. (a) LP_{01} mode is converted to LP_{11a} mode; (b) LP_{11a} mode is converted to LP_{01} mode

式的有效折射率相等或非常接近。因此,首先固定了 芯层高度 $h=4.0 \ \mu m$,这里选择这一厚度是因为,针对 所选择的波导材料,该厚度的平板波导满足 y方向的 单模条件,且较易旋涂实现。接下来,我们使用商业模 式求解器(COMSOL)计算了在1550 nm 波长下不同 波导宽度对应的 $x \pi y$ 偏振 LP₀₁模和 LP_{11a}模的有效折 射率(N_{eff}),计算得到的模式色散曲线如图 3 所示,从 中选择了 $w_1=9.0 \ \mu m$, $w_2=6.3 \ \mu m$, $w_3=2.7 \ \mu m$ 。相应 地,表1总结了 LP₀₁和 LP_{11a}模在 $x \pi y$ 偏振方向的有效

研究论文

- 图 3 固定 *h*=4.0 μm, LP₀₁模和 LP_{11a}模在不同芯层宽度下的有 效折射率
- Fig. 3 Effective refractive indices of LP_{01} mode and LP_{11a} mode at fixed h=4.0 μ m for different waveguide widths
- 表1 所提出的模式转换器在不同芯层宽度下沿 x 和 y 偏振方 向的模式有效折射率

Table 1	Effective	refractive	indices	along	x	and	у	polarized
	direction	ns at differe	ent core v	widths	of	oropo	osec	device

Polarized	Mode	Effective refractive index					
direction		$w_1 = 9.0 \ \mu m$	$w_2 = 6.3 \mu \mathrm{m}$	w_3 =2.7 μm			
	LP_{01}	1.56599	1.56510	1.56193			
x	LP_{11a}	1.56218	1.55969	_			
	LP_{01}	1.56596	1.56508	1.56191			
У	LP_{11a}	1.56218	1.55967	_			

折射率。可以看出,stem A(B)中的LP₀₁模的有效折 射率与 arm B(C)中的LP₀₁模的有效折射率明显不同, 但与 arm A(D)的LP₀₁模的有效折射率非常接近。因 此,stem A(B)中的LP₀₁模在经过非对称Y分支时可 以转换为 arm A(D)中的LP₀₁模,该过程几乎没有功率 损失。同样地,stem A(B)中的LP_{11a}模可以转换为 arm B(C)中的LP₀₁模。

需要指出的是,虽然图3显示的色散曲线对于*x*和*y*偏振几乎重叠,但*x*和*y*偏振的LP₀₁(LP_{11a})模的有效折射率仍然存在细微差异,如表1所示,这导致了所提出的模式转换器无法使*x*和*y*偏振的LP₀₁(LP_{11a})模式同时实现最大的模式转换效率。因此,所提出的器件仅对*x*偏振情况下的模式转换进行了优化。

模式转换器的性能还取决于两个主干波导的z向 间距L、非对称 Y 分支末端宽度 w_4 以及两臂的最大间 距 w_5 。考虑到可用于模式选择的非对称 Y 分支需要 满足模式转换因子大于 0.43^[34],采用三维有限差分 光束传播法(3DFD-BPM)进行了参数优化,最终确定 $L=1.5 \text{ mm}, w_4=3.1 \mu \text{m}, w_5=6.8 \mu \text{m}$ 。图 4展示了根 据上述参数利用 3DFD-BPM 模拟得到的模传输和归 一化模式能量的变化情况。如图 4(a)和图 4(c)所示, 输入端激发的 1550 nm 波长的x偏振 LP₀₁和 LP_{11a}模可 以分别转换为x偏振的 LP_{11a}和 LP₀₁模,相应的模式转 换效率如图 4(b)和图 4(d)所示,分别为 99.3% 和 99.2%。

Fig. 4 Optical transmission and normalized energy change of mode converter. (a) Optical transmission when LP₀₁ mode is converted to LP_{11a} mode; (b) normalized energy change when LP₀₁ mode is converted to LP_{11a} mode; (c) optical transmission when LP_{11a} mode is converted to LP₀₁ mode ; (d) normalized energy change when LP_{11a} mode is converted to LP₀₁ mode

3 器件制作

根据以上器件参数,利用实验室微加工设备制作 了所提出的模式转换器。该器件的芯层和包层材料分 别为聚合物材料 EpoCore 和 EpoClad,且聚合物波导 是在硅衬底上制作的。下面简要介绍制作工艺。首先 在硅衬底上旋涂约 7 μm 厚的 EpoClad 薄膜作为下包 层。接下来,将 EpoCore 旋涂到下包层上得到厚度约

研究论文

第51卷第6期/2024年3月/中国激光

为4 μm的薄膜,使用标准光刻工艺制作器件图案。随后,旋涂一层厚度约为7.8 μm的EpoClad薄膜作为上包层。最后,解理样品以形成输入输出端面。最终制作得到的模式转换器尺寸仅为1.5 mm×14.0 μm。然而,为了便于测量,设计的输入/输出主干波导的长度

远远超过了所需的长度,因此器件的实际长度远大于 1.5 mm。图 5(a)显示了包含数十个模式转换器的照片, 图 5(b)及其插图分别显示了制作的模式转换器和放大 的非对称 Y 分支的显微镜图像,图 5(c)和图 5(d)分别 显示了所制作的器件的主干和中心部分的横截面。

图 5 所制作的模式转换器的显微图像。(a)所制作的模式转换器芯片的照片;(b)所制作的模式转换器和放大的非对称Y分支 (插图)的显微镜图像;(c)所制作器件的主干波导的横截面图;(d)所制作器件的中心部分的横截面图

Fig. 5 Microscope images of fabricated mode converter. (a) Photograph of fabricated mode converter chip; (b) microscope images of fabricated mode converter and enlarged asymmetric Y-junction (inset); (c) cross-sectional view of stem waveguide of fabricated device; (d) cross-sectional view of central part of fabricated device

4 测试结果和讨论

首先测试了所制作的模式转换器的性能。来自可 调谐激光器的光波通过偏振控制器(PC)后经透镜单 模光纤(SMF)耦合进待测器件的 stem A 端口以激发 LP₀₁模和LP_{11a}模。为了激发 stem A 中的 LP_{11a}模,我们 调整了透镜 SMF 的位置,相对于芯层中心引入了适当 的位移,且相对于芯轴引入了较小的倾斜角。当*x*和*y*偏振的LP₀₁模和LP₁₁模分别在stem A 中激发时,利用 红外相机拍摄到了stem B 端口的近场光斑,如图 6 所 示。在可调谐激光器波长范围为1530~1560 nm的情 况下,耦合到stem A 中的 LP₀₁(LP_{11a})模演变为偏振不 敏感的 stem B 中的 LP_{11a}(LP₀₁)模,这与仿真结果非常 吻合。

Fig. 6 Near-field images taken at different wavelengths for mode converter when x and y polarized LP₀₁ and LP_{11a} modes are launched into device, respectively

研究论文

然后,利用放大自发辐射(ASE)光源研究了LP_{11a}-LP₀₁的模式转换以评估器件的带宽和插入损耗。来自 ASE的光通过透镜SMF耦合到器件的stem A中以激 发LP_{11a}模,通过检偏器和沿输入透镜SMF放置的PC 来切换输入光波的偏振态。从stem B端输出的光信 号由另一个SMF收集,并连接至光谱仪(OSA)进行 实时监测。该器件的归一化输出光谱如图7所示,这 里归一化是对光纤-光纤的传输谱进行的。可以看出, 在1530~1600 nm的波长范围内,*x*偏振的插入损耗在 4.8 dB和5.8 dB之间,*y*偏振的插入损耗在 3.5 dB和 5.1 dB之间。该结果表明,该器件实现了大带宽的模 式转换,且*x*和*y*偏振的情况均覆盖了C+L波段。波 长调谐范围受到了激光光源的限制,实际上该器件的 带宽要大于C+L波段。

如上所述,该器件的模式转换特性主要由两个非 对称Y分支决定,因此,为了进一步研究该非对称Y分 支的模式串扰和转换特性,我们从中间位置解理了该 器件以获得非对称Y分支。然后,我们将x和y偏振 的LPoi模分别耦合到非对称Y分支的宽臂波导和窄臂 波导中,并获取了主干波导输出的近场光斑图像。如

第51卷第6期/2024年3月/中国激光

图 7 *x*和*y*偏振 LP_{11a}模在器件的 stem A 中激发时的归一化 传输光谱

Fig. 7 Normalized transmission spectra when x and y polarized LP_{IIa} modes are excited in stem A of device

图 8(a)所示,在1550 nm 波长下,当LP₀₁模在宽(窄)臂 波导中被激发时,主干波导输出LP₀₁(LP_{11a})模。此外, 当*x*和*y*偏振的LP₀₁(LP_{11a})模分别在主干波导中被激 发时,只有宽(窄)臂波导输出LP₀模。这些结果表明, 我们的非对称 Y 分支实现了低串扰且高效的模式 转换。

图 8 在 1550 nm 波长下非对称 Y 分支的近场输出光斑。(a) 当 x 或 y 偏振的 LP₀₁模式在宽臂或窄臂中被激发时,主干波导输出的近场图像;(b) 当 x 和 y 偏振的 LP₀₁或 LP₁₁模分别在主干波导中激发时,宽臂和窄臂波导输出的近场图像

Fig. 8 Near-field output spots of asymmetric Y-junction at 1550 nm wavelength. (a) Near-field images taken from stem waveguide when x or y polarized LP₀₁ mode is excited in wide or narrow arm; (b) near-field images taken from wide and narrow arms when x and y polarized LP₀₁ or LP_{11a} modes are excited in stem waveguide

我们也测试了非对称Y分支的模式转换效率和模 式串扰。当x和y偏振的LP₀₁(LP_{11a})模分别在主干波 导中被激发时,宽臂和窄臂波导的输出光谱如图9所 示。需要说明的是,这只是为了测量模式串扰,因此数 据没有作归一化处理。结果表明,在忽略非对称Y分 支的辐射损耗和波导传输损耗的前提下,在C+L波 段内x和y偏振下的模式转换效率分别大于98%和 98.1%。当主干波导激发起x(y)偏振的LP₀₁模时,非 对称Y分支的模式串扰小于-18.5 dB(-19 dB),而 当主干波导激发起x或y偏振的LP_{11a}模时,非对称Y 分支的模式串扰均小于-17.5 dB。这里仿真结果与 实验结果之间的差异首先主要是由于存在不可避免 的工艺误差,特别地,由于所采用的普通光刻机的分 辨率只有1μm,故实验上难以实现所设计的尖锐且 较小的非对称Y分支的分支角,后续可通过优化器件 设计与制作工艺来减小分支角的影响,进一步提升器 件性能。其次,所采用的聚合物材料较大的吸收损耗 (1dB/cm~2dB/cm^[27])也是导致器件传输损耗较大, 性能不如理论预期好的另一个重要原因,这可以通过 采用低损耗的材料平台如薄膜铌酸锂、氮化硅等来 弥补。

图 9 非对称Y分支主干波导不同模式被激发时宽臂和窄臂的输出光谱。(a)x偏振的LP。i模被激发;(b)y偏振的LP。i模被激发; (c)x偏振的LP11a模被激发;(d)y偏振的LP11a模被激发

Fig. 9 Output spectra of wide and narrow arms when different modes are excited in stem waveguide of asymmetric Y-junction. (a) x polarized LP₀₁ mode is excited; (b) y polarized LP₀₁ mode is excited; (c) x polarized LP_{11a} mode is excited; (d) y polarized LP_{11a} mode is excited

结 论 5

提出了一种在聚合物平台上的基于级联非对称 Y分支的模式转换器,该模式转换器可以实现LPm 模和LP_{11a}模的相互转换。制作的模式转换器具有 1.5 mm×14.0 µm的紧凑尺寸。实验结果表明:在C+L 波段内, x和v偏振的模式转换效率均大于98%, 串扰 小于-17.5 dB,插入损耗小于5.8 dB。所提出的基于 聚合物材料的模式转换器易于制作且成本低。特别 地,同样的结构也可以在具有高折射率对比(即波导芯 层和包层折射率的差值大)的材料平台上实现,比如绝 缘体上铌酸锂、氮化硅和绝缘体上硅等,从而实现更紧 凑的集成器件,促进MDM系统的发展。

老 文 献 怣

- [1] Essiambre R J, Kramer G, Winzer P J, et al. Capacity limits of optical fiber networks[J]. Journal of Lightwave Technology, 2010, 28(4): 662-701.
- [2] Li G F, Bai N, Zhao N B, et al. Space-division multiplexing: the next frontier in optical communication[J]. Advances in Optics and Photonics, 2014, 6(4): 413-487.
- [3] Memon A K, Chen K X. Recent advances in mode converters for a mode division multiplex transmission system[J]. Opto-Electronics Review, 2021, 29(1): 13-32.
- Du J B, Shen W H, Liu J C, et al. Mode division multiplexing: [4] from photonic integration to optical fiber transmission[J]. Chinese

Optics Letters, 2021, 19(9): 091301.

- [5] Lee Y S, Lim K S, Islam M R, et al. Dynamic LP₀₁-LP₁₁ mode conversion by a tilted binary phase plate[J]. Journal of Lightwave Technology, 2017, 35(16): 3597-3603.
- Soma D, Wakayama Y, Beppu S, et al. 10.16-peta-B/s dense [6] SDM/WDM transmission over 6-mode 19-core fiber across the C+L band[J]. Journal of Lightwave Technology, 2018, 36(6): 1362-1368
- [7] Zhao Y H, Liu Y Q, Zhang C Y, et al. All-fiber mode converter based on long-period fiber gratings written in few-mode fiber[J]. Optics Letters, 2017, 42(22): 4708-4711.
- [8] Dong J L, Chiang K S. Temperature-insensitive mode converters with CO2-laser written long-period fiber gratings[J]. IEEE Photonics Technology Letters, 2015, 27(9): 1006-1009.
- [9] Saitoh K, Uematsu T, Hanzawa N, et al. PLC-based LP11 mode rotator for mode-division multiplexing transmission[J]. Optics Express, 2014, 22(16): 19117-19130.
- Zhao Y T, Guo X H, Zhang Y, et al. Ultra-compact silicon mode-[10] order converters based on dielectric slots[J]. Optics Letters, 2020, 45(13): 3797-3800.
- [11] Hanzawa N, Saitoh K, Sakamoto T, et al. Two-mode PLC-based mode multi/demultiplexer for mode and wavelength division multiplexed transmission[J]. Optics Express, 2013, 21(22): 25752-25760.
- [12] Zhao W K, Chen K X, Wu J Y, et al. Horizontal directional coupler formed with waveguides of different heights for modedivision multiplexing[J]. IEEE Photonics Journal, 2017, 9(5): 6601509
- Huang Q D, Wu Y F, Jin W, et al. Mode multiplexer with [13] cascaded vertical asymmetric waveguide directional couplers[J]. Journal of Lightwave Technology, 2018, 36(14): 2903-2911.

第 51 卷 第 6 期/2024 年 3 月/中国激光

研究论文

1323004.

- [14] 于雪莲, 佐珊珊, 王鹏飞, 等. 基于定向耦合器的双芯模式转换器[J]. 光学学报, 2022, 42(13): 1323004.
 Yu X L, Zuo S S, Wang P F, et al. Dual-core mode converter based on directional coupler[J]. Acta Optica Sinica, 2022, 42(13):
- [15] Leuthold J, Eckner J, Gamper E, et al. Multimode interference couplers for the conversion and combining of zero- and first-order modes[J]. Journal of Lightwave Technology, 1998, 16(7): 1228-1239.
- [16] Guo F, Lu D, Zhang R K, et al. Two-mode converters at 1.3 μm based on multimode interference couplers on InP substrates[J]. Chinese Physics Letters, 2016, 33(2): 024203.
- [17] Gui C C, Gao Y, Zhang Z L, et al. On-chip silicon two-mode (de)multiplexer for OFDM/OQAM data transmission based on grating-assisted coupler[J]. IEEE Photonics Journal, 2015, 7(6): 7905807.
- [18] Xiao R L, Shi Y C, Li J A, et al. On-chip mode converter based on two cascaded Bragg gratings[J]. Optics Express, 2019, 27(3): 1941-1957.
- [19] Jin W, Chiang K S. Mode converters based on cascaded longperiod waveguide gratings[J]. Optics Letters, 2016, 41(13): 3130-3133.
- [20] Wang W, Wu J Y, Chen K X, et al. Ultra-broadband mode converters based on length-apodized long-period waveguide gratings[J]. Optics Express, 2017, 25(13): 14341-14350.
- [21] Zhao W K, Chen K X, Wu J Y. Ultra-short embedded long-period waveguide grating for broadband mode conversion[J]. Applied Physics B, 2019, 125(9): 177.
- [22] Driscoll J B, Grote R R, Souhan B, et al. Asymmetric Y junctions in silicon waveguides for on-chip mode-division multiplexing[J]. Optics Letters, 2013, 38(11): 1854-1856.
- [23] Chen W W, Wang P J, Yang T J, et al. Silicon three-mode (de) multiplexer based on cascaded asymmetric Y junctions[J]. Optics Letters, 2016, 41(12): 2851-2854.

- [24] Feng J, Chen K X, Wu J Y, et al. Mode (de)multiplexer based on polymer-waveguide asymmetric Y-junction[C] // Asia Communications and Photonics Conference 2016, November 2–5, 2016, Wuhan, China. New York: IEEE Press, 2016.
- [25] Wu Y F, Chiang K S. Ultra-broadband mode multiplexers based on three-dimensional asymmetric waveguide branches[J]. Optics Letters, 2017, 42(3): 407-410.
- [26] Fujisawa T, Yamashita Y, Sakamoto T, et al. Scrambling-type three-mode PLC multiplexer based on cascaded Y-branch waveguide with integrated mode rotator[J]. Journal of Lightwave Technology, 2018, 36(10): 1985-1992.
- [27] Zhao W K, Feng J, Chen K X, et al. Reconfigurable broadband mode (de)multiplexer based on an integrated thermally induced long -period grating and asymmetric Y-junction[J]. Optics Letters, 2018, 43(9): 2082-2085.
- [28] Huang Y Y, Xu G Y, Ho S T. An ultracompact optical mode order converter[J]. IEEE Photonics Technology Letters, 2006, 18 (21): 2281-2283.
- [29] Zhang M R, Chen K X, Jin W, et al. Electro-optic mode switch based on lithium-niobate Mach-Zehnder interferometer[J]. Applied Optics, 2016, 55(16): 4418-4422.
- [30] Zhang M R, Chen K X, Wang M K, et al. Electro-optic reconfigurable two-mode (de)multiplexer on thin-film lithium niobate[J]. Optics Letters, 2021, 46(5): 1001-1004.
- [31] Ohana D, Desiatov B, Mazurski N, et al. Dielectric metasurface as a platform for spatial mode conversion in nanoscale waveguides [J]. Nano Letters, 2016, 16(12): 7956-7961.
- [32] Love J D, Riesen N. Single-, few-, and multimode Y-junctions[J]. Journal of Lightwave Technology, 2012, 30(3): 304-309.
- [33] Burns W K, Milton A F. Mode conversion in planar-dielectric separating waveguides[J]. IEEE Journal of Quantum Electronics, 1975, 11(1): 32-39.
- [34] Riesen N, Love J D. Design of mode-sorting asymmetric Yjunctions[J]. Applied Optics, 2012, 51(15): 2778-2783.

Compact, Broadband, and Efficient LP₀₁-LP_{11a} Mode Converter Based on Cascaded Asymmetric Y-Junction

Zhang Hao, Deng Jiayao, Wang Mengke, Ma Xiaoxia, Chen Kaixin^{*} School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China,

Chengdu 611731, Sichuan, China

Abstract

Objective The current information capacity of communication systems based on single-mode fibers (SMFs) is approaching its physical limits. To solve this problem, spatial-division multiplexing based on mode-division multiplexing (MDM) has been intensively investigated. Due to its orthogonal characteristics, MDM can help realize more multiplexed channels, and thus the capacity of existing optical fiber communications can be enhanced. Mode converters are critical devices in optical-fiber communication systems and are essential for improving the performance of future MDM systems applicable in long-distance and high-capacity optical-fiber communication. Mode-conversion efficiency is a major index of mode converters. Mode converters based on asymmetric Y junctions on polymer platforms offer the advantages of low cost, high fabrication tolerance, and wide bandwidth. Thus, the design and fabrication of mode converters with compact structures and high mode-conversion efficiencies based on asymmetric Y junctions on polymer platforms are essential to meet the increasing demands in data traffic.

Methods The proposed mode converter consists of two identical inversely connected asymmetric Y junctions. The stem of the Y junction is a straight two-mode waveguide designed to support only the E_{11}^i and E_{21}^i modes (i=x or y, indicating the polarization direction), which correspond to the LP₀₁ and LP_{11a} modes (polarized in the *i* direction) of the optical fiber, respectively. This two-mode

core gradually branches into two single-mode cosine S bends with different widths, forming an asymmetric Y junction. Based on the mode evolution principle of the asymmetric Y junction, the parameters of the proposed mode converter based on a cascaded asymmetric Y junction (Fig. 1) are optimized in this study. These parameters include the widths of the core (w_1) , arms A and D (w_2) , and arms B and C (w_3) , as well as the length of the arm (L), width of the Y-junction end (w_4) , and distance between the two Y-junction ends (w_5) . A three-dimensional finite-difference beam-propagation method (3DFD-BPM) is used to simulate the mode-converter is fabricated with in-house microfabrication facilities. In addition, an experiment is conducted to characterize the mode-conversion performance of the proposed mode converter.

Results and Discussions In the proposed mode converter, the waveguide core height is fixed at 4 μ m, and w_1 , w_2 , and w_3 are set to 9.0, 6.3, and 2.7 μ m, respectively. The refractive-index difference between the core and cladding is sufficient to achieve mode conversion. The mode-conversion efficiency between the LP₀₁ and LP_{11a} modes is optimal when the length of the arm , width of the Y-junction end, and distance between the two Y-junction ends are 1.5 μ m, 3.1 μ m, and 6.8 μ m, respectively. The simulation results show that the mode-conversion efficiencies for the *x* polarized LP₀₁-LP_{11a} and LP_{11a}⁻¹LP₀₁ are 99.3% and 99.2%, respectively (Fig. 4). A experiment is conducted to characterize the mode-conversion performance, and the near-field spots detected by the infrared camera indicate that the device can implement mode conversion (Fig. 6). Over a wavelength of 1530 – 1600 nm, the insertion losses are between ~4.8 dB and ~5.8 dB and between ~3.5 dB and ~5.1 dB for the *x* and *y* polarizations, respectively (Fig. 7). To investigate further the mode-conversion and crosstalk characteristics at the asymmetric Y junction of the device, the device is cleaved at the middle position to obtain an asymmetric Y junction. The results show that, under the premise of neglecting the radiation losses of the asymmetric Y junction and propagation losses of the waveguide, the mode-conversion efficiencies are greater than ~98% and ~98.1% for the *x* and *y* polarizations over the C+L band, respectively, and the mode crosstalk is less than -17.5 dB (Fig. 9).

Conclusions We propose and demonstrate a mode converter constructed using two identical asymmetric Y junctions connected inversely. Our proof-of-concept mode converter, designed for the conversion of the LP_{01} and LP_{11a} modes and fabricated using an optical polymer material, has a miniature footprint of approximately $1.5 \text{ mm} \times 14.0 \mu \text{m}$. The results show that over the C+L band and for both polarizations, the mode-conversion efficiencies are greater than ~98%, the crosstalk is less than ~ -17.5 dB, and the insertion loss is less than ~5.8 dB. Our proposed mode converter with polymeric materials is easy to fabricate and inexpensive. In particular, the same structure can be implemented with other high refractive index contrast material platforms such as lithium niobite on insulators, silicon nitride, and silicon on insulators to realize more advanced integrated photonic circuits.

Key words fiber optics; optical devices; mode converter; mode-division multiplexing; polymer waveguides; integrated optics; asymmetric Y-junction